
ty) Pergamon
Int. J. Solids Structures Vol. 31, No.4, pp. 457--467, 1994

© 1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

002l}-7683/94 $6.00 + .00

EQUIVALENT CONTINUUM MODELS OF LARGE
PLATELIKE LATTICE STRUCTURES

USIK LEE
Department ofMechanical Engineering, Inha University, 253 Yong Hyun Dong, Nam Gu, Incheon

402-751, Korea

(Received 10 March 1993; in revised/arm 16 August 1993)

Abstract-A new continuum method based on the concept of energy equivalence is introduced to
represent a large platelike periodic lattice structure as an equivalent continuum plate. The procedure
for developing an equivalent continuum plate involves the use ofexisting well-defined finite-element
matrices for easy calculation of strain and kinetic energies contained in a representative lattice cell
of the lattice plate. The strain and kinetic energies contained in the representative lattice cell of
lattice plate and the finite-element ofequivalent continuum plate are expressed in terms ofcontinuum
degrees-offreedom introduced in this paper with corresponding reduced stiffness and mass matrices.
The structural properties of the equivalent continuum plate are then obtained by simply equating
the reduced stiffness and mass matrices for the equivalent continuum plate to those for the lattice
plate. Free vibration analyses for the continuum plates are conducted to evaluate the continuum
method proposed in this paper. Numerical tests show that the present continuum method gives
very reliable structural and dynamic properties compared with other well-recognized continuum
methods.

I. INTRODUCTION

Large space structures (LSS) have been proposed with dimensions of many kilometers.
Such structures will be designed to be composed of identically constructed cell units which
are connected end-to-end to form a spatially periodic array (Card, 1978). Structural and
dynamic characteristics of the LSS must be predicted accurately during the initial design
phase, since they cannot be tested full scale in their operational environments prior to flight.
Conventional finite-element analysis of the LSS may require a significant amount of storage
capacity and computing time to obtain reliable solutions because of its high structural
flexibility and large size, especially in the dynamic analysis. Thus special techniques to cope
with the very large number of elements and nodes within such large lattice structures are
desired.

Alternative methods have been developed for simplified structural modeling of the
lattice structures composed ofmany repeating cells (see Noor etal., 1978). Ofthese methods,
the simplification of a period lattice structure by an equivalent continuum model, often
named as continuum modeling, is known to provide a very promising and practical
solution method for overall vibration modes and structural responses. The key to continuum
modeling involves the determination of appropriate relationships between the geometric
and material properties of lattice structure and those of the equivalent continuum model.
Because there can be numerous concepts and ways of determining the appropriate relation­
ships between lattice and continuum domains, the continuum modeling itself may not be
unique and can fall in one of several distinct categories. In order to avoid an excessively
long bibliography, the reader is referred to the reference works by Power and Schmidt
(1971), Noor et al. (1978), Nayfeh and Hefzy (1981) and Sun et al. (1988).

The continuum models based on the concept ofenergy equivalence have shown to give
satisfactory results when the wavelength of a vibration mode spans many repeating cells of
a lattice structure (see Noor et al., 1978). Here, energy equivalence means that the lattice
structure and the equivalent continuum model must contain equal kinetic and strain energies
when both domains are subjected to the same displacement and velocity fields. The accuracy
and convenience of the energy equivalence concept generally depend on the way the strain
and kinetic energies, contained in a finite domain oflattice structure or equivalent continuum
model, are calculated. Recently Lee (1990) proposed a new energy equivalence method and
applied it to the large beamlike lattice structures. The new method involves the idea of using
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conventional finite-element matrices in calculating the strain and kinetic energies stored in
a representative lattice cell, which is different from the continuum method by Noor (1978)
in which he used complicated kinematics and assumptions to replace the displacements and
strains in a lattice element by the Taylor series expansions of the displacement and strain
components in the coordinate directions, prior to energy integrations.

The objectives of the present paper are: (1) to propose a simple and rational method
for developing continuum models oflarge platelike lattice structures (simply, lattice plates),
as an extension of the continuum method developed previously for the beamlike lattice
structures by the author (Lee, 1990), and (2) to evaluate the accuracy and validity of the
continuum method developed herein by means of numerical tests.

2. DEVELOPMENT OF EQUIVALENT DYNAMIC CONTINUUM MODELS

2.1. General procedure ofcontinuum modeling
This paper develops a procedure for formulating an equivalent homogeneous aniso­

tropic continuum plate (simply, co~tinuum plate) representation of a large lattice plate
composed of many repeating cells. For the continuum modeling, three basic assumptions
on the lattice plate are made: (1) it behaves grossly as a continuum plate especially in lower
mode vibrations, (2) the ratio of inplane dimensions to thickness is very high (more than
20 in general), and (3) the deflection is small compared to the thickness. Then the lattice
plate can be modeled as a classical thin plate (Whitney, 1987), neglecting the effects of
transverse shear deformation and rotatory inertia. However, it is well known that transverse
shear deformation is frequently important when plate theory is used to model systems such
as truss-type lattice structures (Langhaar, 1962). Also, when a platelike lattice structure is
not symmetric with respect to its midplane, couplings between extension, transverse shear
and bending deformations may be significant. To improve the continuum models oflattice
plate, therefore, the continuum modeling procedure introduced herein includes the shear
and rotatory effects as well as the couplings between three basic deformations, which will
be important especially for the dynamic behavior of truss-type lattice structures.

The continuum modeling based on energy equivalence needs the calculation of the
strain and kinetic energies stored in a representative lattice cell. It is well known that stiffness
and mass matrices for a finite-element can be derived directly from the strain and kinetic
energies calculated after making a reasonable appropriate hypothesis for the displacement
fields within the finite-element. The finite-element matrices for a truss (axial bar) or beam
element are readily available from many text books. Since the convenience of energy
equivalence concept mostly depends on how the energies contained in a finite domain are
calculated easily, it seems to be easy and rational to utilize the finite-element matrices in
calculating the strain and kinetic energies ofa representative lattice cell. Briefly the modeling
procedure consists of the following steps:

(l) a representative lattice cell is isolated from a periodic lattice plate (Fig. 1);
(2) appropriate continuum degrees-of-freedom (DOFs) are introduced to condense

the stiffness and mass matrices which can be derived from the strain and kinetic energy
expressions;

I ~ L:

a) Rectangular Lattice
Plate

b) Equivalent Continuum
Plate Element

Fig. I. Equivalent continuum plate element for a typical repeating cell.
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Type-A Type-B Type-C

Fig. 2. Typical repeating cells considered in present study.

(3) transformation matrices which relate the nodal OOFs for each lattice node to the
continuum OOFs, are formulated;

(4) the strain and kinetic energies stored in a representative lattice cell are obtained in
terms of continuum DOFs by utilizing well-defined existing finite-element matrices for a
truss or beam element. Reduced stiffness and mass matrices for a representative lattice cell
are then derived from these energy expressions;

(5) reduced stiffness and mass matrices for a finite-element of continuum plate are
also derived by expressing the strain and kinetic energies stored in a finite-element of
continuum plate as the functions of continuum OOFs. The reduced matrices will contain
all equivalent structural properties of the continuum plate to be determined;

(6) the equivalent structural properties of a continuum plate are finally obtained by
simply equating the reduced stiffness and mass matrices for the representative lattice cell
to those for the finite-element of continuum plate.

2.2. Reduced stiffness and mass matrices for a representative lattice cell
Three rectangular lattice plate models having different types of repeating cells, as

shown in Fig. 2, will be transformed into the equivalent rectangular continuum plates. The
repeating cells are composed of several different lattice elements: top and bottom surfaces
bars, vertical bars and diagonal bars. Generally the repeating cells are so constructed that
all joints are located on one of top, bottom and middle surfaces. Figure 3 shows the three
distinct surfaces on which joints are located. As in conventional finite-element analysis, the
joints will be considered as nodal points (or nodes) at which nodal OOFs are defined. In
Figs 1 and 3, u and v are the inplane displacements in the x- and y-directions, w the
transverse deflection in the z-direction, and Ox and Oy are the rotations about the x- and y­
axes, respectively.

The nodal OOFs at each node can be combined to be expressed in the form of
displacement vectors as indicated in Fig. 3. The nodal displacements vector at the i-th node
of (Xi> Yi, z;) on the top or bottom surface is defined by:

(1)

Three rotational OOFs can be readily added to {b i } in the case of nonhinged joints.
The nodal displacement vector at (Xi' Yi' 0) in midsurface is now defined by:

f)y

Z,W

Fig. 3. Nodal DOFs and sign convention for a repeating cell.
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(2)

Where two rotational DOFs are included to account for the inplane deformations due
to bending, which are linearly proportional to the distance from the midsurface under the
assumption of small deformation. Then the approximated relation between {15;} and {5;}
is found as follows:

[

1 0 0

{15;} = 0 1 0
001

o
-z;

o
~}5') ~ [A,]{5,). (3)

We now introduce the continuum DOFs at the center of midsurface (0,0,0), in the
vector form as :

(4)

where

(5)

(6)

The vector {dR
} represents the rigid-body displacements vector at the center of the mid­

surface, and the vector {dEl' represents the strains and curvatures vector due to elastic
deformations. The vector {dE} is obviously responsible for the strain energy storage, while
the vector {dR

} is mainly responsible for the kinetic energy storage. Using Taylor series
expansion, and neglecting higher order terms under the assumption of small deformation,
{5;} can be also related to {d}, approximately in the form of:

{5;} = [B;]{d} = [Bf Bf]{d}. (7)

The transformation matrix [B;] is given in Table 1. Combining eqns (3) and (7), one
can represent the nodal displacements as the sum of two parts: the part of rigid-body
displacements and the part of elastic deformations. That is :

where

{15;} = {15f} +{15f},

{15n = [A;HBf]{dR
} = [Rf]{dR

},

{15f} = [A;][Bf]{dE
} = [Rf]{dE

}.

(8)

(9)

(10)

Thus the rigid-body displacements and the elastic deformations at each node can be

Table I. Transformation matrix: [B,] = [B~Bf]

[B~l [Bfl

I 0 0 0 0 XI 0 y,f2 0 0 0 0 0

0 I 0 0 0 0 YI y,f2 0 0 0 0 0

0 0 I Yi -X, 0 0 0 X, Yi -xl/2 -yf/2 -xlyJ2

0 0 0 I 0 0 0 0 0 0 0 -YI -xJ2

0 0 0 0 I 0 0 0 0 0 Xi 0 Y,/2
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(:&j, Yi, Zj)

CD 16)1

CD 16jl
(:&j. Yj' Zj)

Fig. 4. A typical lattice element.
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represented as the functions of continuum DOFs through eqns (8)-(10). Figure 4 shows
the e-th lattice element between two nodes, i and j. Ifwe know the coordinates of the two
nodes, the length and direction cosines of the lattice element can be calculated to construct
a coordinate transformation matrix [Sel which transforms the local coordinates attached
to the lattice element into the global coordinates. The finite-element stiffness and mass
matrices for the lattice element with respect to global coordinates are then obtained from:

[mel = [Sef[meHSel,

(ll)

(l2)

where [kel and [mel are the finite-element matrices with respect to local coordinates. Using
the finite-element matrices of eqns (11) and (l2), the strain and kinetic energies stored in
the e-th lattice element are obtained from:

where

l{'R}T - {'R}Te = 2 de [mel de ,

(l3)

(l4)

(15)

(l6)

The element energies of eqns (13) and (14) can be expressed as the functions of
continuum DOFs by substituting eqns (15) and (16) into them. Summing all element
energies, total energies stored in a representative lattice cell are obtained from:

(l7)

(l8)
e

where [KLl and [MLl are the reduced stiffness and mass matrices for a representative lattice
cell defined by:
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(19)

(20)

Judging from the definition of continuum DOFs introduced in eqn (4), [Kd and [Md
are found to be 8 x 8 and 5 x 5 symmetric matrices, respectively.

2.3. Reduced stiffness and mass matricesJor afinite-element ojcontinuum plate
A representative lattice cell of the periodic lattice plate is so transformed into a

rectangular finite-element of continuum plate that both lattice plate and continuum plate
are structurally and dynamically equivalent to each other. Assuming the midsurface of a
continuum finite-element coincides with the midsurface of the corresponding representative
lattice cell, the same nodal displacements vector {51} as defined in eqn (2) for the rep­
resentative lattice cell is again introduced at each node of continuum finite-element. The
nine-noded finite-element, as an example, is shown in Fig. 5. Based on the shear deformation
theory of anisotropic plate (Chia, 1980), the strain energy within the continuum finite­
element of area A. can be obtained from:

(21)

where{N} = {Nx, Ny, NxyVarethe resultant membrane forces, {Q} = {Qx,QyVtheresult­
ant transverse shear forces, and {M} = {Mx , My, Mxy }T the resultant moments, all per unit
length. Also the inplane strains {e}, the transverse shear strains {y}, and the bending and
twisting curvatures {x} can be expressed in terms of displacement derivatives as follows:

{
au av av aU}T

{e} = ax' ay' ax + ay , (22)

(23)

(24)

The basic constitutive relations of the anisotropic plate are symbolically given as :

y

@IG) <ID 16el

@ @--1651 "" ,..... ,

<D @ 1621 <3>1I
14?1

b 1~41

1611 431
II------=-a----l·I

Fig. 5. Nine-noded finite-element for the homogeneous anisotropic plate.
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(25)

where symmetric matrices [A], [S] and [D] are the membrane, transverse shear and bending
rigidity symmetric matrices, respectively. The matrices [F], [B], and [H] are the extension­
transverse shear, extension-bending, and transverse shear-bending coupling rigidity matr­
ices (Whitney, 1987). As mentioned earlier, the transverse shear and coupling effects may
be important especially for the dynamic behavior of truss-type lattice structures. The
displacements and rotations within a finite-element can be described in terms of the nodal
displacements by use of interpolation through the shape functions Nj(x, y), as follows:

n

(u, D, w, Ox, Oy) = L: Nj(uj, Vj, Wi' UXj ' Uyi ),
j~ 1

(26)

where n is the number of nodes within a finite-element. By substituting the elastic defor­
mations part of eqn (26) into eqns (22)-(24), and using the relations of eqns (2) and (7),
the strains and curvatures vector is rewritten in the form:

(27)

Defining !Xj = iJNdiJx and pj = iJNdiJy, the submatrices in eqn (27) are derived as
follows:

(28)

The eqns (25) and (27) are substituted into eqn (21) to express the strain energy as:

(29)

where [Kcl, the reduced stiffness matrix for a finite-element of continuum plate is given as:

[Kcl = Ie [OY[E][O] dA. (30)

The matrix [0] is mainly dependent on the shape functions N j and the coordinates
(Xj, Yj, Zj) of nodal points within a finite-element. To compute [0], five different rectangular
finite-elements are analytically tested. They are four-noded, nine-noded, and 16-noded
Lagrange elements, and eight-noded and 12-noded serendipity elements (Huang, 1989). It
is quite interesting to conclude that the matrix [0] always becomes the identity matrix for
all finite-elements, except for the four-noded Lagrange element for which [0] is also very
close to the identity matrix. This may be one of the important advantages of introducing
the continuum DOFs defined in eqn (4). Hence, the reduced stiffness matrix for a continuum
plate can be much simplified as follows:

(31)

Now, the kinetic energy within a finite-element of continuum plate is given as:
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(32)

where {OR} is the rigid-body displacements part of {u, v, w, Ox, OyV, and [m] is the generalized
inertia matrix which includes all coupling inertias as follows:

[m] = [m;j] (i,j = 1, ... ,5). (33)

In general, mil = m22 = m33 = m are recognized as the mass per unit area,
m15 = -m24 = /the first moment of inertia of mass, and m44 = m55 = Jthe second (polar)
moment of inertia of mass. In eqn (32), only the rigid-body displacements are considered
for the kinetic energy to parallel with the formulation of eqn (14). Using eqns (9) and (26),
the kinetic energy is rewritten in the form:

(34)

where [Me]' the reduced mass matrix for a continuum plate, is now given by:

(35)

It is found that [m]eq is almost identical to [m]eq, except for the elements m44
eq

and
m55 which are related by:

eq

b2

m44 = m44 + -m33
eq eq 12 eq'

a 2

m55 = m55 + -m33
eq eq 12 eq'

(36)

(37)

where a and b are the dimensions of finite-element in the x- and y-directions, respe<;tively.

2.4. Equivalent continuum structural properties
As described in the procedure of continuum modeling, the structural equivalent prop­

erties ofcontinuum plate can be obtained from the concept of energy equivalence: VL = Ve
and TL = Te . Thus simply equating eqns (19) and (20) to eqns (31) and (35), respectively,
one obtains:

(38)

(39)

Therefore the equivalent continuum plate rigidities [E]eq and inertias [m]eq for a lattice
plate can be readily calculated from quite simplified formulas of eqns (36)-(39). The need
is only to compute the reduced stiffness and mass matrices for a representative lattice cell
by use of eqns (19) and (20).

3. NUMERICAL TESTS AND DISCUSSIONS

In order to evaluate the proposed continuum method by means of numerical tests,
three types of repeating cells, as shown in Fig. 2, are considered. Among very small number
of studies on the continuum modeling oflattice plates, Sun et al. (1988), Noor et al. (1978),
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Geometric
and material

properties

p (kg m- 3)

E(Nm- 2 )

a, b, h (m)
Ix> Iy (m)

A(m{ __:__

Type-A

2768
71.7 x 109

7.5,7.5,7.5
75,75 (10 Bays)

4OxlO- 6

5 x 10- 6

Lattice plates
Type-B

2768
71.7 x 109

10.6, 10.6, 7.5
60, 60 (8 Bays)

4OxlO- 6

50x 10- 6

25xlO- 7

lOx 10- 6

80xlO- 6

Type-C

2768
71.7 x 109

7.5,7.5,7.5
60,60 (8 Bays)

80x 10- 6

4OxlO- 6

and Flower and Schmidt (1971) considered the same lattice plates as Type-A, Type-B and
Type-C models, respectively.

Sun et al. (1988) developed the continuum model by relating the deformation charac­
teristics of a repeating cell to those of a continuum element by use of static analysis. Noor
et al. (1978) developed the continuum models by expanding the nodal displacement of a
lattice member in Taylor's series, and by equating the strain and kinetic energies of the
lattice and continuum plates. Finally, Flower and Schmidt (1971) used the discrete field
approach to obtain the approximated differential equations from the governing difference
equations of the lattice plate. In the present study, their numerical results are compared
with the results obtained by the present continuum method. For easy comparison, the same
geometric and material properties of lattice elements that they used in their works are also
used in the present study. Details of geometric and material properties are listed in Table
2. Note that p is the mass density per unit volume, E Young's modulus, A a cross-sectional
area of lattice element, and a, b, and h the dimensions of a representative lattice cell in the
X-, y- and z-directions, respectively. Lx and Ly are the dimensions of lattice plate in the x­
and y-directions. For the vibration analysis, each lattice model is also assumed to be
subjected to the same boundary conditions as considered by Sun et al. (1988) and Noor et
al. (1978). That is, Type-A is clamped along one edge and free on the other edges, and
Type-B and Type-C are simply supported on all edges.

Table 3 compares the equivalent structural properties of three lattice plate models. The
equivalent structural properties by the present method are found to be very close to the

Table 3. Equivalent continuum plate rigidities (x 105) and inertias

Equivalent Type-A Type-B Type-C
rigidities Sun Noor Power

and inertias Present (1988) Present (1978) Present (1971)

All = A 22 (N m-I) 17.02 16.95 17.16 16.82 16.34 -t
A6dNm- l

) 1.044 1.980 4.394 4.394 1.041
A12 (Nm- l ) 1.044 1.044 4.394 4.394 1.041
AI6 = A 26 (N m-I) 0.0 0.0 0.0 0.0
B II = B 22 (N) 0.0 0.0 14.56 14.56 0.0
BI2 = B 66 (N) 0.0 0.0 3.802 3.802 0.0
B I6 = B26 (N) 0.0 0.0 0.0 0.0
D 1I = D 22 (N m) 224.6 224.6 236.5 236.6 215.1 215.1
D 12 = D 66 (N m) 9.506 9.500 61.79 61.79 0.0
D I6 = D 26 (N m) 0.0 0.0 0.0 0.0
S44 = Sss (N m-I) 1.044 1.044 0.338 0.338 0.416
S4S (N m-I) 0.0 0.0 0.0 0.0
F';} (N m-I)t 0.0 0.0 0.0 0.0
Hi} (N)t 0.0 0.0 0.0 0.0
m(kgm- 2) 0.221 0.221 0.178 0.178 0.263 0.263
I (kg m-I) 0.0 0.0 0.142 0.142 0.0
J(kg) 3.447 2.242 2.656 2.368 2.477
Other inertias 0.0 0.0 0.0

ti = 1,2,6;j = 4,5.
t (-) indicates the property cannot be given by the corresponding theory.

$AS 31:4-8*
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Table 4. Natural frequencies (Hz) of lattice plates

Type-A Type-B
Mode Direct Continuum Sol. Direct Continuum Sol.

no. sol. Present Sun (1988) sol. Present Noor (1978)

I 0.905 0.918 0.920 4.505 4.509 4.481
2 1.090 1.134 1.142 7.731 7.692 7.669
3 2.007 2.046t 2.046t 10.082 9.910 9.891
4 4.001 4.128 4.157 11.220 11.190 11.161
5 4.234 4.350 4.399 12.840 13.096t 13.094t
6 4.859 5.257 5.322 13.062 12.814 12.793
7 5.924 6.084t 6.081t 14.655 14.791 14.726
8 6.477 6.892 6.999 15.580 15.160 15.146
9 8.579 7.952 8.014 16.178 16.049 16.001

10 8.726 8.937 9.163 17.815 17.961 18.319

t Inplane modes.

results by other methods, especially to the results by Noor et al. (1978). The influence of
the geometric and material properties of lattice elements on the equivalent structural
properties can be observed from Table 3 (see the axial-bending coupling rigidities Bij)' The
advantage of the present continuum method is that it can give us all kinds of equivalent
structural properties, while the other methods give only limited number of structural
properties as shown in Table 3. To evaluate the accuracy and validity of the present
continuum method, the natural frequencies by the present continuum method are also
compared with those by other methods, i.e. the direct solutions by the conventional full­
scale finite-element analysis of the original lattice plates (Sun et al., 1988, and Noor et al.,
1978), and the continuum solutions by the continuum methods of Sun et al. (1988), Noor
et al. (1978) and Power and Schmidt (1971). The equivalent structural properties of Table
3 are used in calculating the continuum solutions which are given in Table 4.

For the free vibration analyses of continuum plates, nine-noded rectangularLagrange
element is used. For the sufficient convergence of the 10 lowest fundamental frequencies,
the analysis was repeated with increasing the number of finite-elements. For the natural
frequencies shown in Table 4, and for the normal mode shapes shown in Figs 6 and 7, 8 x 8
meshes of elements are used along with the reduced Gaussian integration rule, which is
usually adopted to overcome overstiff solutions. And the shear correction factor 5/6 is
considered in the expression for the shear rigidity [S] to allow for warping of the plate
cross-section (Hinton and Bicanic, 1979). Table 4 shows the accuracy of the natural
frequencies with respect to the direct solutions. It is found that the present continuum
method gives improved results, which are rather close to the direct solutions by the con­
ventional finite-element analysis than to the solutions by other methods in general. Many
authors (see Noor et al., 1978 and Sun et al., 1988) have demonstrated that continuum

1st mode ( 0.918 Hz)

4th mode ( 4.128 Hz)

2nd mode ( 1.134 Hz)

5th mode ( 4.350 Hz)

3rd mode ( 2.046 Hz)

6th mode ( 5.257 Hz)
Fig. 6. Lowest six normal modes for the lattice plate Type-A clamped along one edge (third mode

is the inplane mode).



Models of platelike lattice structures 467

1st mode ( 4.509 Hz)

4th mode ( 11.190 Hz)

2nd mode ( 7.692 Hz)

5th mode ( 13.096 Hz)

3rd mode ( 9.910 Hz)

6th mode ( 12.614 Hz)

Fig. 7. Lowest six normal modes for the simply supported lattice plate Type-B (fifth mode is the
inplane mode).

methods are highly accurate especially when the wavelength of the vibration mode encom­
passes more than one repeating cell. Thus, the continuum method developed in this paper,
as a new member ofcontinuum methods, is also expected to provide satisfactory continuum
models for the lower modes vibrations of large flexible platelike lattice structures in space.

4. CONCLUSION

Based on the concept of energy equivalence, a new continuum modeling method is
introduced for the large platelike periodic lattice plates. The key to continuum modeling
involves the introduction of appropriate continuum DOFs and the use of existing well­
defined finite-element matrices for easy calculation of strain and kinetic energies contained
in a representative lattice cell, and accordingly for easy derivation of equivalent structural
properties of continuum plates. Numerical tests prove that the present continuum method
gives very reliable and competitive equivalent structural properties compared to the other
existing continuum methods.
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